# Logistic Regression

## Logistic Regression

### Summary

• Classification, introduction
• Linear separability
• Logistic regression, and playing in higher dimensions

# Separability

## Separability

• Classes are linearly separable if they can be separated by some linear combination of feature values (a hyperplane).

## Separability

• This frontier is a linear discriminant.

## Separability

### Classification

• In regression, we defined a straight line with two parameters: $y = \theta_1 x + \theta_2$
• But in classification we need to know which side of the line is which
• More generally, a hyperplane in N dimensions
• This we can do if we define the hyperplane with a perpendicular vector: $$\vec{w}^T \vec{x} + w_0 = 0$$
• Note: $\vec{x}$ is an N dimensional vector

## Separability

### Hyperplane

• Frontier given by function $$y(\vec{x})=\vec{w}^T \vec{x} + w_0$$ that is positive on one side of the hyperplane and negative on the other.
• So one class is the positive one, the other the negative one.

## Logistic Regression

### Fitting with LMS

• We want to find the best $\vec{w}$ and $w_0$ for
$$y(\vec{x})=\vec{w}^T \vec{x} + w_0$$
• This function is negative one one side and positive on the other
• So we can try minimizing the squared error, considering classes 1 and -1:
$$E = \sum_{j=1}^{N} \left(y(\vec{x_j}) - t_j\right) ^2$$

### Fitting with LMS

• Data on gene expression (Uri Alon et. al.,PNAS, 96(12), 1999)
• Carbonic anhydrase IV gene (M83670)
• Guanylate cyclase activator 2A gene (M97496)
• Tumour (1) or Normal (0)

-81	10	1
-30	60	1
-1	48	1
4	78	1
...
116	542	0
718	1816	0
332	412	0


### Preprocessing the data

• Need to rescale the values
• Normalization: $x_{new} = \frac{x -min(X)}{max(X)-min(X)}$
• Standardization: $x_{new} = \frac{x -\mu(X)}{\sigma(X)}$
• Important: store these parameters and apply to all new points

import numpy as np

Ys = mat[:,[-1]]
Xs = mat[:,:-1]
means = np.mean(Xs,0)
stdevs = np.std(Xs,0)
Xs = (Xs-means)/stdevs


### Simplifying the expression

• Instead of $$y(\vec{x})=\vec{w}^T \vec{x} + w_0$$
• Let's merge the parameters and add a 1 to the feature vectors: $$\widetilde{w} = (\vec{w},w_0), \widetilde{x} = (\vec{x},1), y(\vec{x})=\widetilde{w}^T\widetilde{x}$$


def expand_features(X):
"""append a columns of 1
"""
X_exp = np.ones((X.shape[0],X.shape[1]+1))
X_exp[:,:-1] = X
return X_exp


### Fitting with LMS

• Measure the error
• Note that the class values are 0 and 1, so change to -1 and 1

"""return  error value comparing signed distance with y
"""
coefs = np.zeros((len(theta),1))
coefs[:,0] = theta
vals = np.dot(X,coefs)
return np.mean((vals-(2*y-1))**2)


### Fitting with LMS

• Minimize the error

from scipy.optimize import minimize
import matplotlib.pyplot as plt

X_exp = expand_features(Xs)
coefs = np.ones(X_exp.shape[1])
coefs = opt.x
# plot the chart


### Fitting with LMS

• Not a good result...
• Minimizing the squared error makes points away from the discriminant weigh more
• This is good in regression but bad in classification, as it pulls the discriminant towards distant points

### Regression

• Fit the data as closely as possible to predict continuous values

### Classification

• Find discriminant between discrete classes

# Logistic Regression

## Logistic Regression

### Logistic Regression

• Assume there is a function: $$g(\vec{x},\widetilde{w})=P(C_1|\vec{x})$$
• We want our hyperplane to be at $$P(C_1|\vec{x})=P(C_0|\vec{x})=1-P(C_1|\vec{x})$$
• Regression on probabilities, but we'll use it as a classifier. Also note that $\vec{x}$ is an N dimensional vector
• Assumed: $g(\vec{x},\widetilde{w})=P(C_1|\vec{x})$
• Plane: $P(C_1|\vec{x})=P(C_0|\vec{x})=1-P(C_1|\vec{x})$

$$\ln \frac{P(C_1|\vec{x})}{1-P({C_1}|\vec{x})} = 0 = \ln \frac{g(\vec{x},\widetilde{w})}{1-g(\vec{x},\widetilde{w})}$$

## Logistic Regression

### Logistic Regression

• Assumed: $g(\vec{x},\widetilde{w})=P(C_1|\vec{x})$
• Plane: $P(C_1|\vec{x})=P(C_0|\vec{x})=1-P(C_1|\vec{x})$

$$\ln \frac{g(\vec{x},\widetilde{w})}{1-g(\vec{x},\widetilde{w})}= \vec{w}^T\vec{x}+w_0$$

$$ln \frac{g(\vec{x},\widetilde{w})}{1-g(\vec{x},\widetilde{w})}= \vec{w}^T\vec{x}+w_0 \Leftrightarrow g(\vec{x},\widetilde{w}) = \frac{1}{1+e^{-(\vec{w}^T\vec{x}+w_0)}}$$

## Logistic Regression

### Logistic Function

• Unlike quadratic curve, logistic function levels with distance
$$g(\vec{x},\widetilde{w}) = \frac{1}{1+e^{-(\vec{w}^T\vec{x}+w_0)}}$$

• This solves the problem of points farther away pulling the discriminant

## Logistic Regression

### Find $\widetilde{w}$ by maximum likelihood

• Given: $g(\vec{x},\widetilde{w})=P(t_n = 1|\vec{x})$ and $t_n \in \{0,1\}$
$$\mathcal{L}(\widetilde{w}|X) = \prod_{n=1}^{N} \left[ g_n^{t_n}(1-g_n)^{1-t_n}\right]$$ $$l(\widetilde{w}|X) = \sum_{n=1}^{N} \left[ t_n \ln g_n + (1-t_n) \ln (1-g_n) \right]$$
• Maximize likelihood is to minimize the error in predicting probabilities (logistic loss or cross entropy):
$$E(\widetilde{w}) = - \frac{1}{N}\sum_{n=1}^{N} \left[ t_n \ln g_n + (1-t_n) \ln (1-g_n) \right]$$ $$g_n = \frac{1}{1+e^{-(\vec{w}^T\vec{x_n}+w_0)}}$$

# Example

## Example

• Load and standardize the data (as before)
• Write logistic function (Note: you won't be doing this)

def logistic(X):
"""return logistic function of vector X"""
den = 1.0 + np.e ** (-1.0 * X)
return 1.0 / den

• And the logistic cost function to minimize

def log_cost(theta,X,y):
"""return  logistic error value
X is matrix, one example per row and 1 in last column
y is a vector of classes 0 or 1
"""
coefs = np.zeros((len(theta),1))
coefs[:,0] = theta
sig_vals = logistic(np.dot(X,coefs))
log_1 = np.log(sig_vals)*y
log_0 = np.log((1-sig_vals))*(1-y)
return -np.mean(log_0+log_1)


## Example

• Minimizing this function, we get a better result:

# Nonlinear Separability

## Nonlinear Separability

### This set is not linearly separable

• actin-binding protein X53416, smooth muscle cell Ca binding protein U37019

## Nonlinear Separability

### This set is not linearly separable

• but we can expand the features.

## Nonlinear Separability

• First, we add a term $x_1 \times x_2$

def poly_3features(X):
"""append a column with the product of the two first features
"""
X_exp = np.zeros((X.shape[0],X.shape[1]+1))
X_exp[:,:-1] = X
X_exp[:,-1] = X[:,0]*X[:,1]
return X_exp

• Now we do a logistic regression in 3D

from sklearn.linear_model import LogisticRegression

X_exp = poly_3features(Xs)
reg = LogisticRegression(C=1e12, tol=1e-10)
reg.fit(X_exp,Ys[:,0])


## Nonlinear Separability

• And we get a plane instead of a line

## Nonlinear Separability

• Project back into the original plane

## Nonlinear Separability

• Expand more: $x_1,x_2,x_1x_2,x_1^2,x_2^2$

## Nonlinear Separability

• Expand more: $x_1,x_2,x_1x_2,x_1^2,x_2^2,x_1^3,x_2^3$

## Nonlinear Separability

• Expand more:$x_1,x_2,x_1x_2,x_1^2,x_2^2,x_1^3,x_2^3,x_1^2x_2,x_1x_2^2$

## Nonlinear Separability

• Is this too much? Overfitting?

# Summary

## Logistic Regression

### Summary

• Linear separability
• Linear discriminant (hyperplane)
• Fitting the discriminant with LMS
• Logistic Regression
• Linear separability in higher dimensions
• Next lecture: overfitting in classification